dying shift - vertaling naar russisch
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

dying shift - vertaling naar russisch

BIT-LEVEL COMPUTER OPERATION
Logical shift left; Shift left; Shift Left; Logical shift right; Logical left shift; Logical right shift
  • Logical left shift one bit
  • Logical right shift one bit

dying shift      

общая лексика

выклинивание

shift key         
  • Keyboard symbol for “Level 2 Select” (i.e. “Shift”)
MODIFIER KEY ON MANY COMPUTER KEYBOARDS, USED TO WRITE CAPITAL LETTERS OR COMMON SYMBOLS
⇧; SHIFT key; Left Shift key; LShift key; LShift; LSHIFT; Right Shift key; RShift key; RShift; RSHIFT; Shift code; Shift Key

['ʃiftki:]

общая лексика

«смена регистра» (клавиша регистра на пишущей машинке и т. п.)

shift key         
  • Keyboard symbol for “Level 2 Select” (i.e. “Shift”)
MODIFIER KEY ON MANY COMPUTER KEYBOARDS, USED TO WRITE CAPITAL LETTERS OR COMMON SYMBOLS
⇧; SHIFT key; Left Shift key; LShift key; LShift; LSHIFT; Right Shift key; RShift key; RShift; RSHIFT; Shift code; Shift Key
клавиша переключения регистра (наборной машины)

Definitie

Красное смещение

понижение частот электромагнитного излучения, одно из проявлений Доплера эффекта. Название "К. с." связано с тем, что в видимой части спектра в результате этого явления линии оказываются смещенными к его красному концу; К. с. наблюдается и в излучениях любых др. частот, например в радиодиапазоне. Противоположный эффект, связанный с повышением частот, называется синим (или фиолетовым) смещением. Чаще всего термин "К. с." используется для обозначения двух явлений - космологическое К. с. и гравитационное К. с.

Космологическим (метагалактическим) К. с. называют наблюдаемое для всех далёких источников (галактик (См. Галактики), квазаров (См. Квазары)) понижение частот излучения, свидетельствующее об удалении этих источников друг от друга и, в частности, от нашей Галактики, т. е. о нестационарности (расширении) Метагалактики. К. с. для галактик было обнаружено американским астрономом В. Слайфером в 1912-14; в 1929 Э. Хаббл открыл, что К. с. для далёких галактик больше, чем для близких, и возрастает приблизительно пропорционально расстоянию (закон К. с., или закон Хаббла). Предлагались различные объяснения наблюдаемого смещения спектральных линий. Такова, например, гипотеза о распаде световых квантов за время, составляющее миллионы и миллиарды лет, в течение которого свет далёких источников достигает земного наблюдателя; согласно этой гипотезе, при распаде уменьшается энергия, с чем связано и изменение частоты излучения. Однако эта гипотеза не подтверждается наблюдениями. В частности, К. с. в разных участках спектра одного и того же источника, в рамках гипотезы, должно быть различным. Между тем все данные наблюдений свидетельствуют о том, что К. с. не зависит от частоты, относительное изменение частоты z = (ν0- ν)/ν0 совершенно одинаково для всех частот излучения не только в оптическом, но и в радиодиапазоне данного источника (ν0 - частота некоторой линии спектра источника, ν - частота той же линии, регистрируемая приёмником; ν<ν0). Такое изменение частоты - характерное свойство доплеровского смещения и фактически исключает все др. истолкования К. с.

В относительности теории (См. Относительности теория) доплеровское К. с. рассматривается как результат замедления течения времени в движущейся системе отсчёта (эффект специальной теории относительности). Если скорость системы источника относительно системы приёмника составляет υ (в случае метагалактич. К. с. υ - это Лучевая скорость), то

(c - скорость света в вакууме) и по наблюдаемому К. с. легко определить лучевую скорость источника: . Из этого уравнения следует, что при z → ∞ скорость v приближается к скорости света, оставаясь всегда меньше её (v < с). При скорости v, намного меньшей скорости света (υ << с), формула упрощается: υ cz. Закон Хаббла в этом случае записывается в форме υ = cz = Hr (r - расстояние, Н - постоянная Хаббла). Для определения расстояний до внегалактических объектов по этой формуле нужно знать численное значение постоянной Хаббла Н. Знание этой постоянной очень важно и для космологии (См. Космология): с ней связан т. н. возраст Вселенной.

Вплоть до 50-х гг. 20 в. внегалактические расстояния (измерение которых связано, естественно, с большими трудностями) сильно занижались, в связи с чем значение Н, определённое по этим расстояниям, получилось сильно завышенным. В начале 70-х гг. 20 в. для постоянной Хаббла принято значение Н = 53 ± 5 (км/сек)/Мгпс, обратная величина Т = 1/Н = 18 млрд. лет.

Фотографирование спектров слабых (далёких) источников для измерения К. с., даже при использовании наиболее крупных инструментов и чувствительных фотопластинок, требует благоприятных условий наблюдений и длительных экспозиций. Для галактик уверенно измеряются смещения z ≈ 0,2, соответствующие скорости υ ≈ 60 000 км/сек и расстоянию свыше 1 млрд. пс. При таких скоростях и расстояниях закон Хаббла применим в простейшей форме (погрешность порядка 10\%, т. е. такая же, как погрешность определения Н). Квазары в среднем в сто раз ярче галактик и, следовательно, могут наблюдаться на расстояниях в десять раз больших (если пространство евклидово). Для квазаров действительно регистрируются z ≈ 2 и больше. При смещениях z = 2 скорость υ ≈ 0,8․с = 240 000 км/сек. При таких скоростях уже сказываются специфические космологические эффекты - нестационарность и кривизна пространства - времени (См. Кривизна пространства-времени); в частности, становится неприменимым понятие единого однозначного расстояния (одно из расстояний - расстояние по К. с. - составляет здесь, очевидно, r= υlH = 4,5 млрд. пс). К. с. свидетельствует о расширении всей доступной наблюдениям части Вселенной; это явление обычно называется расширением (астрономической) Вселенной.

Гравитационное К. с. является следствием замедления темпа времени и обусловлено гравитационным полем (эффект общей теории относительности). Это явление (называется также эффектом Эйнштейна, обобщённым эффектом Доплера) было предсказано А. Эйнштейном в 1911, наблюдалось начиная с 1919 сначала в излучении Солнца, а затем и некоторых др. звёзд. Гравитационное К. с. принято характеризовать условной скоростью υ, вычисляемой формально по тем же формулам, что и в случаях космологического К. с. Значения условной скорости: для Солнца υ = 0,6 км/сек, для плотной звезды Сириус В υ = 20 км/сек. В 1959 впервые удалось измерить К. с., обусловленное гравитационным полем Земли, которое очень мало: υ = 7,5․10-5см/ сек (см. Мёссбауэра эффект). В некоторых случаях (например, при коллапсе гравитационном (См. Коллапс гравитационный)) должно наблюдаться К. с. обоих типов (в виде суммарного эффекта).

Лит.: Ландау Л. Д., Лифшиц Е. М., Теория поля, 4 изд., М., 1962, § 89, 107; Наблюдательные основы космологии, пер. с англ., М., 1965.

Г. И. Наан.

Wikipedia

Logical shift

In computer science, a logical shift is a bitwise operation that shifts all the bits of its operand. The two base variants are the logical left shift and the logical right shift. This is further modulated by the number of bit positions a given value shall be shifted, such as shift left by 1 or shift right by n. Unlike an arithmetic shift, a logical shift does not preserve a number's sign bit or distinguish a number's exponent from its significand (mantissa); every bit in the operand is simply moved a given number of bit positions, and the vacant bit-positions are filled, usually with zeros, and possibly ones (contrast with a circular shift).

A logical shift is often used when its operand is being treated as a sequence of bits instead of as a number.

Logical shifts can be useful as efficient ways to perform multiplication or division of unsigned integers by powers of two. Shifting left by n bits on a signed or unsigned binary number has the effect of multiplying it by 2n. Shifting right by n bits on an unsigned binary number has the effect of dividing it by 2n (rounding towards 0).

Logical right shift differs from arithmetic right shift. Thus, many languages have different operators for them. For example, in Java and JavaScript, the logical right shift operator is >>>, but the arithmetic right shift operator is >>. (Java has only one left shift operator (<<), because left shift via logic and arithmetic have the same effect.)

The programming languages C, C++, and Go, however, have only one right shift operator, >>. Most C and C++ implementations, and Go, choose which right shift to perform depending on the type of integer being shifted: signed integers are shifted using the arithmetic shift, and unsigned integers are shifted using the logical shift.

All currently relevant C standards (ISO/IEC 9899:1999 to 2011) leave a definition gap for cases where the number of shifts is equal to or bigger than the number of bits in the operands in a way that the result is undefined. This helps allow C compilers to emit efficient code for various platforms by allowing direct use of the native shift instructions which have differing behavior. For example, shift-left-word in PowerPC chooses the more-intuitive behavior where shifting by the bit width or above gives zero, whereas SHL in x86 chooses to mask the shift amount to the lower bits to reduce the maximum execution time of the instructions, and as such a shift by the bit width doesn't change the value.

Some languages, such as the .NET Framework and LLVM, also leave shifting by the bit width and above unspecified (.NET) or undefined (LLVM). Others choose to specify the behavior of their most common target platforms, such as C# which specifies the x86 behavior.

Vertaling van &#39dying shift&#39 naar Russisch